Global Existence and Long-Time Asymptotics for Rotating Fluids in a 3D Layer
نویسنده
چکیده
The Navier-Stokes-Coriolis system is a simple model for rotating fluids, which allows to study the influence of the Coriolis force on the dynamics of three-dimensional flows. In this paper, we consider the NSC system in an infinite three-dimensional layer delimited by two horizontal planes, with periodic boundary conditions in the vertical direction. If the angular velocity parameter is sufficiently large, depending on the initial data, we prove the existence of global, infinite-energy solutions with nonzero circulation number. We also show that these solutions converge toward two-dimensional Lamb-Oseen vortices as t → ∞.
منابع مشابه
Thermosolutal Convection of Micropolar Rotating Fluids Saturating a Porous Medium
Double-diffusive convection in a micropolar fluid layer heated and soluted from below in the presence of uniform rotation saturating a porous medium is theoretically investigated. An exact solution is obtained for a flat fluid layer contained between two free boundaries. To study the onset of convection, a linear stability analysis theory and normal mode analysis method have been used. For the ...
متن کاملThermal Convection of Rotating Micropolar Fluid in Hydromagnetics Saturating A Porous Medium
This paper deals with the theoretical investigation of the thermal instability of a thin layer of electrically conducting micropolar rotating fluid, heated from below in the presence of uniform vertical magnetic field in porous medium. A dispersion relation is obtained for a flat fluid layer, contained between two free boundaries using a linear stability analysis theory, and normal mode analysi...
متن کاملNonlinear stability of rotating two superposed magnetized fluids with the technique of the homotopy perturbation
In the present work, the Rayleigh-Taylor instability of two rotating superposed magnetized fluids within the presence of a vertical or a horizontal magnetic flux has been investigated. The nonlinear theory is applied, by solving the equation of motion and uses the acceptable nonlinear boundary conditions. However, the nonlinear characteristic equation within the elevation parameter is obtained....
متن کامل3D Finite element modeling for Dynamic Behavior Evaluation of Marin Risers Due to VIV and Internal Flow
The complete 3D nonlinear dynamic problem of extensible, flexible risers conveying fluid is considered. For describing the dynamics of the system, the Newtonian derivation procedure is followed. The velocity field inside the pipe formulated using hydrostatic and Bernoulli equations. The hydrodynamic effects of external fluids are taken into consideration through the nonlinear drag forces in var...
متن کاملAsymptotics for the infinite time ruin probability of a dependent risk model with a constant interest rate and dominatedly varying-tailed claim sizes
This paper mainly considers a nonstandard risk model with a constant interest rate, where both the claim sizes and the inter-arrival times follow some certain dependence structures. When the claim sizes are dominatedly varying-tailed, asymptotics for the infinite time ruin probability of the above dependent risk model have been given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008